SS 2014 - Computer Vision: Object and People Tracking
Room and Time
Lecture: 13/305, Monday, 08:00-09:30
Exercise: 32-411-PC, Wednesday, 14:15-15:45, see below
Contacts
Prof. Dr. Didier Stricker
Dr. Gabriele Bleser: Gabriele.Bleser(at)dfki.de
Topics:
- Edge, corner and blob detection
- Feature descriptors and matching
- Background modelling and subtraction
- Feature tracking and optical flow
- Object detection
- Recursive Bayesian tracking
- (Extended) Kalman filter and particle filter
- Applications
Slides
The slides will be continuously added here:
- 28.04.2014: Introduction
- 05.05.2014: Edge and corner detection
- 12.05.2014: Blobs & Scale Invariance
- 19.05.2014: Descriptors
- 26.05.2014: Background subtraction
- 02.06.2014: Optical flow
- 16.06.2014: Bayesian tracking framework
- 23.06.2014: Kalman filter
- 30.06.2014: Extended Kalman filter
- 07.07.2014: Particle filter
- 14.07.2014: Visual Object Tracking
- 21.07.2014: Visual Object Tracking 2
Exercises
Please read the exercise policy (updated at 13.05.2014). Assignments will appear here:
- Matlab Introduction (As supplementary material, no submission)
- Exercise Sheet 1 (Deadline: 20.05., exercise session on 21.05.)
- Exercise Sheet 2 (Deadline: 02.06., exercise session on 04.06.)
- Exercise Sheet 3 (Deadline: 30.06., on 02.07. at DFKI, room 1.04)
- Exercise Sheet 4 (Deadline: 21.07., exercise session on 13.08. at DFKI, room 1.04)
Bibliography (textbooks)
- David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach
- Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision
- Y. Ma, S. Soatto, J. Kosecka, S. Sastry, An invitation to 3D Vision, 2003
- Giorgio Panin, Model-based visual tracking, ed. Wiley-Blackwell
- Sebastian Thrun, Probabilistic Robotics (http://www.probabilistic-robotics.org/)
- Y. Bar-Shalom, Estimation with Applications to Tracking and Navigation: Theory Algorthims and Software: Theory Algorithms and Software